Ett första inlägg om datalogiskt tänkande

Innan #blogg24 (dvs blogga varje dag 1 till 24 december) började, dvs precis innan jag startade denna blogg, gjorde jag en lista med möjliga blogginlägg, för att se att jag skulle ha en sportslig chans att faktiskt producera tillräckligt många inlägg. Nu har det visat sig att själva skrivandet i sig har gett upphov till en hel del nya idéer, och att jag haft mindre tid att skriva än jag tänkt, men jag har trots allt utgått en hel del från den listan.

En av de första sakerna som jag skrev ner var ”computational thinking”, vilket jag tycker bäst översätts till datalogiskt tänkande (även om jag tror att termen kan vara avskräckande). Denna term är också den jag oftast ser och ger en del google-träffar. Har nu tänkt ta mig tid att skriva detta inlägg – för jag tänker mig att det skulle ta mer tid än de andra inläggen – i nästan tre veckor. Det blir aldrig att jag har denna längre mängd tid som jag tänker mig att jag behöver. Så jag får börja med ett inlägg idag, och bygga vidare på senare.

Vad ingår i datalogiskt tänkande

Termen computational thinking fick ett bredare genomslag genom Jeanette Wings artikel med samma namn. Den argumenterar för att dessa förmågor är användbara utanför datavetenskapen och dels exemplifierar vad det är. Till exempel handlar det konceptuell förmåga, det är mer än att ”bara” programmera. Det kompletterar och kombinerar matematiska och ingenjörsmässiga kompetenser. Artikeln är från 2006 och sedan dess har det kommit en del förslag på vilka förmågor som ingår i begreppet.

Google har en del resurser kring datalogiskt tänkande, där de tar upp följande problemlösningsförmågor som delar av begreppet:

  • Att bryta ner ett problem i mindre delar (decomposition)
  • Mönsterigenkänning (pattern recognition)
  • Mönstergeneralisering och abstraktioner (Pattern Generalization and Abstraction)
  • Algoritmdesign

Jag tycker inte att de förmågor som Google tar upp täcker allt jag skulle vilja se som en del av begreppet. Den definition som jag gillar bäst hittills är från International Society for Technology in Education och Computer Science Teachers Association, som föreslår att datalogiskt tänkande är problemlösningsprocesser som utmärks av (men inte begränsas till):

  • Formulera problem som gör att datorer och andra verktyg kan hjälpa oss lösa dem
  • Logiskt organisera och analysera data
  • Representera data genom abstraktioner som modeller och simuleringar
  • Automatisera lösningar genom algoritmiskt tänkande
  • Identifiera, analysera och implementera möjliga lösningar med målet att få den mest effektiva kombinationen av steg och resurser
  • Generalisera och överföra dessa processer till en variation av problem

De kopplar även detta till ett antal attityder, vilket jag tycker är en viktig del:

  • Trygghet inför att hantera komplexitet
  • Uthållighet inför svåra problem
  • Tolerans för tvetydighet
  • Förmåga att hantera öppna problem
  • Förmågan att kommunicera och samarbeta för att uppnå gemensamma mål och lösningar

Till slut, två bilder över vad som ingår i datalogiskt tänkande, som överlappar med det som listats ovan, men också tillför och förenklar, från Barefoot Computing och Somerset.

Några fler lästips

Computer Science Teachers Association har en sida med resurser kring datalogiskt tänkande, bland annat denna PDF som kopplar de olika förmågorna till olika ämnen och årskurser. International Society for Technology in Education har också en sida med resurser.

Datalogiskt tänkande = Data + Logik + Tänkande av Fredrik Heintz, Linköpings universitet, som har ett intressant projekt om datalogiskt tänkande.

Presentation om datalogiskt tänkande och skaparkultur i skolan av Peter Parnes, Luleå tekniska universitet, som bland annat kört workshopserie om CS4HS i Luleå och som också har ett intressant projekt om datalogiskt tänkande och maker-kultur i skolan.

Det får vara allt för denna gång, men mer finns att hämta i min Evernote.

2 tankar kring ”Ett första inlägg om datalogiskt tänkande

  1. Pingback: Att använda öppna data i skolan - Marie Gustafsson Friberger

  2. Pingback: Illustrationer av datalogiskt tänkande

Lämna ett svar

Din e-postadress kommer inte publiceras.

Denna webbplats använder Akismet för att minska skräppost. Lär dig hur din kommentardata bearbetas.